(25^x-4*5^x)^2+8*5^x 2*25^x+15

2 min read Jun 16, 2024
(25^x-4*5^x)^2+8*5^x 2*25^x+15

Simplifying the Expression: (25^x - 45^x)^2 + 85^x * 2*25^x + 15

This problem involves simplifying a complex expression with exponential terms. We can achieve this through a series of algebraic manipulations, taking advantage of the properties of exponents. Here's a step-by-step solution:

1. Factor out 5^x:

Notice that both 25^x and 5^x can be expressed in terms of 5^x:

  • 25^x = (5^2)^x = 5^(2x)

Therefore, the expression can be rewritten as:

(5^(2x) - 45^x)^2 + 85^x * 2*5^(2x) + 15

2. Simplify the expression:

Now, let's simplify the expression further by factoring out a common factor of 5^x:

  • (5^x(5^x - 4))^2 + 85^x * 25^(2x) + 15
  • 5^(2x) (5^x - 4)^2 + 16*5^(3x) + 15

3. Expand the square term:

Expand the square term to get:

  • 5^(2x) (5^(2x) - 85^x + 16) + 165^(3x) + 15

4. Distribute and combine like terms:

Distribute 5^(2x) and combine like terms:

  • 5^(4x) - 85^(3x) + 165^(2x) + 16*5^(3x) + 15
  • 5^(4x) + 85^(3x) + 165^(2x) + 15

Final Simplified Expression:

The simplified form of the expression is:

(5^(4x) + 85^(3x) + 165^(2x) + 15)

This expression can be further factored, but it depends on the context of the problem. In some cases, the simplified form above might be sufficient.

Related Post


Featured Posts